
ICS183: Bresenham’s algorithm

These notes describe a classic line rasterization algorithm originally published by in 1965 in a paper
by the title Algorithm for Computer Control of a Digital Plotter by Jack Bresenham of IBM. The
algorithm takes two ordered pairs of integers, representing the endpoints of a line segment, and
determines the collection of “pixels”, also represented by 2D integer coordinates, that best approxi-
mates the mathematical line connecting the two end points. In general, only the two endpoints lie
exactly on the line, so the algorithm must decide which pixels in between are “close enough” to be
considered on the line. The beauty of Bresenham’s algorithm is that it operates entirely in integer
arithmetic, and is therefore well-suited to low-level graphics hardware. Bresenham’s algorithm, and
variations of it, are commonly implemented in today’s graphics accelerator chips.

Implicit equation of a line:

To derive Bresenham’s algorithm, we begin with the common slope-intercept formulation of a line,
where the slope is simply the ratio of the change in y to the change in x. That is,

y = mx + b =
∆y

∆x
x + b. (1)

The constant b is the vaue of y at which the line intercepts the Y -axis; thus, (0, b) is a point on
the line. Here, ∆x and ∆y might be obtained using two distinct points on the line, as we shall do
below. Observe that equation (1) represents y as a function of x, and can express every line in the
plane except for a vertical line, which essentially corresponds to an infinite slope. (We will handle
vertical lines as a special case.) Alternatively, we can rearrange the equation so that it provides an
implicit representation of the line. In particular, we may write

F (x, y) = ∆y x−∆x y + ∆x b = 0. (2)

This function specifies the very same line, but implicitly; that is, any point (x, y) that satisfies
F (x, y) = 0 is on the line, but F does not specify how to compute y given x, or vise versa.

In addition to specifying the line, the funtion F assumes a different sign at points that lie on different
sides of the line. In particular, F (x, y) < 0 when (x, y) lies above the line, and F (x, y) > 0 when

F(x,y) < 0

F(x,y) > 0

F(x,y) = 0

y = mx + b

b

above the line

on the line

below the line
(x0,y0) (x0+1,y0)

(x0+1,y0+1)

(x0+1,y0+1/2)

Figure 1: (Left) The implicit function F that defines the line also partitions the plane into three regions;

F (x, y) < 0 above the line, F (x, y) = 0 on the line, and F (x, y) > 0 below the line. (Right) Starting at point

(x0, y0) the next point to be rasterized in drawing the line will be either (x0 + 1, y0) or (x0 + 1, y0 + 1). The

choice depends upon whether F (x0 + 1, y0 + 1
2
) is positive or negative.

1

(x,y) (x+1,y)

L1

L2

L3

L4

Dk Dk+1

D'k+1

Figure 2: As the rasterization process proceeds, we compute each decision variable incrementally from the

prvious decision variable. The increment depends on the previous decision that was made. Both lines L1

and L2 above would result in one increment for moving from Kk to Dk+1, and lines L3 and L4 would result

in a different increment in moving from Dk to D′
k+1.

(x, y) lies below the line. See Figure 1. This is the property that Bresenham’s algorithm exploits in
determining which pixels best approximates a give line.

Let us now consider a line segment whose slope is between 0 and 1, running from “left” to “right”;
that is, a segment whose end points (x0, y0) and (x1, y1) are such that x0 ≤ x1, y0 ≤ y1, and
y1 − y0 ≤ x1 − x0. Constraining the line as such allows us to make a few simplifying assumptions
that make the derivation of Bresenham’s algorithm very straightforward. Once we have handled this
particular case, all the other lines will be easy to handle in a similar manner.

Now consider the figure on the right of Figure 1. This depicts the first pixel on the line segment,
at (x0, y0), and the first “decision” that the algorithm must make; namely, should the next pixel be
(x0 + 1, y0), or (x0 + 1, y0 + 1). These are the only two logical choices, given that the slope of the
line is between 0 and 1. To make this decision, we simply consider the point that is midway between
the two possibilities and determine whether this point is “above” or “below” the line; that is, we
look at the sign of F (x0 + 1, y0 + 1

2). We shall call the resulting value of F the decision variable,
as it will be used to decide between the two possible pixels to select next. Note that the magnitue
of the decision variable is irrelevant – only its sign is needed to make the decision. Plugging the
coordinates of the intermediate point into F and simplifying, we have

F (x0 + 1, y0 +
1
2
) = ∆y (x0 + 1)−∆x (y0 +

1
2
) + ∆x b (3)

= (∆y x0 −∆x y0 + ∆x b) + (∆y − 1
2
∆x) (4)

= F (x0, y0) + (∆y − 1
2
∆x) (5)

= ∆y − 1
2
∆x, (6)

where the final simplification is due to the fact that F (x0, y0) = 0, since the point (x0, y0) is on the
line. Finally, since it is only the sign of this value that we care about, not its magnitude, we can

2

simplify it a bit by multiplying by 2. Thus, our first decision variable is

D = 2 ∆y −∆x. (7)

The decision variable in equation (7) allows us to make the first decision – that is, should the second
pixel have the same y value as the first, or is it 1 higher? But what about subsequent decisions?
In all cases we could simply compute F at the intermediate point and look at its sign. However,
there is a slightly more efficient method, namely incremental computation. Instead of computing the
value of F anew at each decision point, we simply compute how it differs from the previous decision
variable.

Figure 2 depicts three potential decision points and their corresponding decision variables, Dk,
Dk+1 and D′

k+1. Assuming that Dk has already been computed, which of Dk+1 and D′
k+1 should be

computed next, and how do they differ from Dk? The differences are easy to compute, as follows:

F (x + 2, y +
3
2
)− F (x + 1, y +

1
2
) = ∆y −∆x (8)

F (x + 2, y +
1
2
)− F (x + 1, y +

1
2
) = ∆y (9)

To keep the imcrements consistent with our previous definition of D, we must again multiply them
by two. We can now give the complete algorithm.

Rasterize the line from (x0, y0) to (x1, y1), where all coordinates are integers that satisfy x0 ≤
x1, y0 ≤ y1 and y1 − y0 ≤ x1 − x0. Thus, the line is assumed to run from left to right and
have a slope between 0 and 1 (i.e. between 0 and 45 degrees). Lines of all other slopes can be
handled using minor variations of this code.

function Bresenham(x0, y0, x1, y1)
1 ∆x← x1 − x0

2 ∆y← y1 − y0

3 D← 2∆y −∆x
4 x←x0

5 y← y0

6 SetPixel(x, y)
7 while x < x1 do
8 x←x + 1
9 if D < 0 then
10 D←D + 2∆y
11 else
12 y← y + 1
13 D←D + 2(∆y −∆x)
14 endif
15 SetPixel(x, y)
16 endwhile

3

